











while the maximum height of the curve above the x-axis is

H=1

Can we do better, that is, find a curve with a smaller value of E?

Two Circular Arcs

We try a combination of two circular arcs for the portion of the curve in the first quadrant, as shown in
Figure 2. (The other half of the curve is obtained by reflection about the y~axis.) 1.et the first arc have radius
R and angular extend 8. while the remaining portion has radius r and angular extend (w/2 -6). Note that the
parameters r. R, and 8 are not independent, since one can obtain from the diagram

(R-nNcos8 = (R-1).
The arc length of the right-hand portion of the curve becomes

S=0R+ (u/2-0)r,

while the energy is R + ;

Minimizing £, subject to the given constraint, using the method of Lagrangian multiplicrs, leads to the set of
equations
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Finally, since here H=r+(R~1sind
we see that H = 1.2849161...
and : E = 1.4789649... = 0.94153834%(n/2),
while S = 1.8230795... = 1.1606084*(n/2).

The cnergy in this curve is only 94.15% of that in the semicircle, so we can do better.

The Best Ellipse

The two-arc solution suggests that the optimum curve is elongated and has radius of curvature smaller than j
onc at its peak, and larger than one ncar the x-axis. Is it an ellipse? The equation of the ellipse [pg. 411, 13; :
pg. 72, 14] shown in Figure 3 is ]

(x/a)? + () =1,

or in parametric form, x=acost, y=bsint

The eccentricity e is defined by the equation

& =1 - (a/b).

o

The arc length can be found as follows [pg. 26, 9], ,
]

n/2 :

S= = v &+ i :

f ds j; y ‘

!

|

t

. dx . _ dy
where x="u and y = i
Now,  + 3% = &% sin’r + % cos?y,

or, Z + % = b1 — é*sin?y).

So S = bfo"’z v/ 1-&sin’t di = b Re),

where F\é) is the complete elliptic integral of the second kind! [pg. 16, 9; pg. 833, 10; pg. 904, 11; pg. 589, 12}. |
(The clliptic integrals got their name from the fact that they first appeared in the mensuration of the cllipse.)
Finally, fora=1,

1. Note that F denotes more than one thing in this paper. When the letter appears alone, it significs the
1..tegral of the squarc of the curvature, while it denotes the complete clliptic integral of the sccond kind when
is has onc argument, as above.




S=HKe/ W/ 1-é.

The curvature can be found as follows [pg. 553, 13; pg. 22, 14]:

o T ab
=Sk =T33 .
[Z + 5212 7 [ sin®t + b2 cos?)
N E= [«tas= ™% 22 + V%,
ow fx ds J; K2 [ + V4 |
z .
_da nw/2 :
So E= Z’fo 1= sinZgt72 & !

The definite integral can be shown [using pg. 165, 11] to be equal to

[2(e? + 1) Ke) - €2K(e)] ] B €Y,
where é+el=1,

and K{(e) is the complete elliptic integral of the first kind [pg. 16, 9; pg. 834, 10; pg. 904, 11; pg. 589, 12]. So
finally when a=1,

E=[Q-&) Be - 1-A) kel /By 1-£1
When we set e=0 we obtain £=#/2, as we should, since the curve in this case is just a semicircle.

In order to find the best possible ellipse we peed to differentiate the expression above with respect to e. Here
we need the following derivatives {pg. 21, 9; pg. 907, 11}

dE(k) _ E(k) — K(k)
dk ~ k ’
dK(k) _ Ek) — k% K(k)
dk - k k'{ ’

where K+ kt=1 :
The eccentricity of the optimum cllipse satisfies : {
!

Ae)[ae* - 5¢¢ + 3) = K(o)[2¢* - 5¢* + 3}

Solving this cquatien numerically leads to

e = 0.6530018...
with H=bn=1] 1/ 1- ¢ = 1.3203823...




E = 1.4674751... =~ 093422368 * (n/2),
S = 1.8311202... = 1.1657273 * (% /2).
The maximum and minimum radii of curvature are
Tnax = /a =1.74340%... and r_, = a*/b = 0.75735636...

This curve has an energy which is only 93.42% of that of the semicircle. We have found a curve which has a
smaller value of F than our two-arc solution.

Can we do better still?

Multi-arc Approximation

Consider a smooth curve constructed out of n circular arcs (sce Figure 4). Let the radius of curvature of the
piece turning through the angle from a, to a, ., be r,. We note that the total arc length, S ', and the integral

of the square of the curvature, E ', are given by

n-1 n-1
S = 2 (ai+1 -~ ai)r‘. =r._,a,+ 2 (ri_1 - ri)ai.
i@ ta}
i=0 s v da by o3

where a,= Oand a "= #/2. We also have to compute the width, W', and height, H ’,

n-1 n-1
. —_ -— — —
W'= 2 r(cosa, —cosa,,)=rycosa, 1-21 (Fyy = 7)COS @,

120
n-1 n-1
H = 120 ry (sin a,,.q —sin a,)= reqSina, + 1% (Fyoq = ri)sm a,.

To solve our original problem we need to scale whatever curve we obtain so that its overall width equals 2
instead of 2W’. The scaled values are as follows:

H=H'TW'
E=E"W'
S=S'1wW'

Note that the integral of the square of the curvature is decreased when we make the curve larger without
changing its shape.




Optimum Multi-arc Approximation

Our task now is clear: We have to minimize £'W ' by suitable choices of the parameters r, (for i=0,1 ... n-1)
and a, (for i=1,2 ... n-1). Actua'ly, we can pick one of the radii arbitrarily, T for cxample, since the whole

curve will simply be scaled accordingly. The minimization looks difficult at fi:~3 when one considers the
complexity of the product E'W ' and its derivatives. It appears nccessary to resort 0 numerical techniques to
solve for the 2(n -1) parameters.

Fortunately this is not the case, for if
4 pwn =
HEW)=0,
then, by the rule for the differentiation of a product,
dw’' , dE’ Vo
~a e = WUE,
for arbitrary x (i. e. r, and a,*). Since the right-hand side is independent of x, it must cqual a (positive)

constant, e say. Thus we find that

dw'  dE’' 2 ,
- f=—=c“fori=12..n-1,
da1 /da1
dw’' ,dE’ 2 ,
———[=—=cfori=0]l..n-l
dr1 dr1

We need the following derivatives now,

dE’ 1 1 .
—= - —-——|fori=12..n-],
da1 [r1 r1_1]
' (a -a
£=-——1ﬁ-——ﬁfon=o,1...n-1. |
dr, 2
1 rd
%f{— = (r,, - r)sina, fori=12..n-, ;
. |
%’;"1_ = (cosa, — cosa,_)fori=01..n-L |
i
|

Using these derivatives in the equations above we obtain

ryr.y sina, =cfori=12..n-1,

17°4-1

cos Xipq — cosa

! Aypq — Oy

i

=c?fori=01..n-1




It is easy to verify that in the case that n=2, we obtain the same equations as before, provided we introduce
the additional constraint

W' = 1o = (rg ~ r)cosa; =1

Note that, if ¢ is known, a simple procedure will give us all of the parameters. Let o= 1, say, then the second
equation can be used to find a,. (This non-linear equation has to be solved numerically.) The first equation
then allows one to solve for r,. Knowing r,, the second equation allows one to find a,, and so on. If the
value of ¢ is correct, the process will terminate with a = o /2. The correct solution can be found by searching 1
for the appropriate value of ¢. This is very much simpler than a direct scarch on the 2(n -1) parameters.

Some Helpful Relationships

A number of interesting observations can be made now about the muiti-arc solution. First of all, the "energy”
8E’ in an individual arc is directly proportional to the projection § W * of this arc on the x-axis, since

oE = San =)
r ’
1
and W' =r, (cosa, — cosay,,).
So we have SE'/SW' =1/,
and we already know, of course, that E'/W' =176

Next. _otice that the projection, 8 H ', of the (i+1)-th arc on the y-axis equals
8H' =r (sina,, —sina,) = c? L 1]
1( i+1 i [’i+1 '1—1]
The height at the tip of the i-th arc then is

H’=c2[l+—1—-l] fori=12..n-1,
! W N To ,

since Hl' =rysina; = 2/’1'
Ao I S N | P
'n-l r() n-1

Three, Four and Five Arcs

The optimum solution for three arcs gives




H = 1.399926...
E = 1.456879... = 0.9274780%(n/2)
S = 1.929128... = 1.228121%(n/2),
and shows us that the cllipse is not optimal after all. For four arcs we find
H = 1.462089...
E = 1.448212... = 0.9219604* (% /2)
S = 1.987501... = 1.265282%(n /2),
and for five arcs we get
H = 1.500993...
E = 1.443930... = 0.9192345*(n/2)
S = 2.024437... =< 1.288796*(n/2).

These solutions are shown in Figure 5. We see that E is dropping more and more slowly, while S is growing,
asis H.

For five arcs, the parameters for the unscaled curve (r0 = 1), are as follows

r, = 0.500258... a, = 0.078707...
r, = 0334497... a, = 0.237276...
r, = 0253163.. a, = 0.483045...
r, = 0207337... a, = 0.847067...
ry = 0.189705... ag = 1.57079...

Perhaps we can guess the truc minimum energy curve from the numerical data obtained so far The
parameters seem to roughly fit into a pattern like

. . _mi(i+])
=D 29 4T T arl)

: i
In this case (ay, —ay)= w;(—::_%).

' - ¥
so the arc lengths are 85" = rfa,,, - @) = 55
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That is, the arc, all have the same length, and curvature increases lincarly along the curve.
Now we could sum the series for arc length and energy (easy) and for height and width (hard). Then we

would discover that F'=F'H" decreases with 1, and we could find its limit as the number of arcs tends to
infinity. Instcad. we proceed directly to the curve obtained in the limiting process.

The Cornu Spiral

The curve which has curvature varying lincarly with arc-length is called the Cornu Spiral (or Euler’s Spiral)
[pg. 190, 2; pg. 190. 14]. It can be defined using the two Fresnel integrals [pe. 820. 10: pg. 930, 11 pg. 300,

12].
((s) = j;s cos (%lz)dl.
| Sts) = fo * sin &) d.

f’ If we let x < ((s) and y = S(s).
we obtain a curve starting at the origin and curling upwards in the first quadrant. We note that
X = cos (%sz) and y = sin (%sz),
X = - mssin (%sz) and j = ws-;os(%sz).
This verifies that s is the arc-length along this curve, since
2+yi=1,
and that the curvature varies lincarly with arc length, since
yx—-Xy=wms

‘The part of the spiral of interest to us here extends o the right up to the point where the curve becomes
vertical, that is, x=0. This is the point where s=1 and

x = ((1) = 0.7798934... and y = S(1) = 0.4382591...

The energy in this portion of the spiral is just
, 1 1
E' = fo x2ds = j; (ms)2ds = /3.
We now build a smooth curve connecting the two points (—1,0) and (+1,0) by scaling, rotating, and shifting
this tendril as shown in Figure 6. In the right hand quadrant we use

58 g 5= QO

x=1- 5(1) Sy

(The rest of the curve is obtained by reflection about the y-axis.)

T bl

N‘m\«- 2ot
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We then find that
H = ((1)78(1) = 1.779525...
E = (w%/3) 5(1) = 1.441814... = 0.9178877*(n/2),
S = 1/5(1) = 2.281755... = 1.452610%(n /2).

The curve constructed out of a portion of the Cornu Spiral only has 91.78% of the energy of the semicircle
and is thus the best curve so far,

But, can we do better still?

Six Arcs and More

unfortunately, the Cornu Spiral is not optimal cither, as one sces by considering the best six urc solution for

which
F = 1.441508... = 0.9176931*(=/2).
For cight arcs, .'?8 =~ 0.916097%(x/2),
for sixteen arcs, Ele = 0.914532%(n /2),
for thirty-two arcs, E32 = 0.914285%(n/2),
and for sixty-four Lfs 4 = 0.913953%(x/2).

These solutions arc shown in Figure 7.

It seems that the total energy is approaching some limit, near 91.39% of that in the semicircle. Some of these
results are summarized in Tables | and 1.

TABLE1

n E/(n/2) S/(n/2) H Tmin

1 1.0 1.0 1.0 1.0

2 .9415383 1.160608 1,284916 9245284
3 9274780 1.228121 1.399925 .8950140
4 9219604 1.265282 1.462089 8794932
5 9192345 1.288796 1.500993 8700129
6 9176896 1.305012 1.527622 8636634
7 9167300 1.316870 1.546987 8591353
8 9160932 1.325918 1.561701 8557555

SHTNONE At e RS e e .
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TABLE

n E/(n/2) S/n12) H o
16 9144692 1.358673 1.614492 8442353
2 9140406 1.375704 1641625 8389106
64 9139305 1.384403 1655392 836516
128 9139025 1.388789 1662308 835461
256 9138955 1.390998 1.665786 834998
512 9138938 1.392110 167534 83473
1024 9138934 1.392671 1.668417 83467
2048 9138932 1.392984 1.668908 83463

We can get better and better approximations to the optimum curve, provided we also carry out computations
with more and more significant figures. Note. by the v ay, that while F varies little once u is reasonably large,
S and H continue to show appreciable changes. This is a reflection of the fact that some distortions of the
optimum curve produce only small changes in the total energy.

Some Observations About the Optimum Curve

The multi-arc approximation tends to the optimum curve in the limit as n tends to infinity. So we can learn
some propertics of the optimum curve from what we have so far. First of all,

; _ 2
from rirSina, =c

we get k% = cos ¢,

where « is the curvature and ¢ is the angle which the curve makes with the x-axis. The constant ¢ only affects
the size of the curve, not its shape. We cannot determine it at this point.

2SSy, cosay

From - — =5,
Xipp — Xy
sin[(ay,, —a;)/2]
we get '2‘6 (“14-‘1}‘01);2 sin [(a‘i+1 + ai)lzl = cz‘
which in the limit again leads to k% = cos{.
We also obtain Z—f = /¢,
from %:7’ = 1/é.

Now F= fxzds = fﬂ V 1+ (dy/dn? dx,

PR

s
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) x? 1/ 1 + (dy/dx)? = 1/

e ~ & _
urther, since, dx = tan v,
we again obtain, k% = cos ¢

Each of these approaches leads us to the same simple equation for the curve.

. v_2fl 11
Finally, from H =c¢ [’i + Fs 'o]'
we get in the limit - K= y/2cz.

‘That is, the curvature varies lincarly along the axis of symmetry of the optimal curve. Substituting for x we
also derive

*cos ¥ = (32

Note that since the optimal curve bends downwards, its second derivative is negative. This is why, by the
usual sign conventions, curvature too is negative. Thus we will use the equation

—(‘KIVCOSJ

between ¥ = + /2 at the left end and ¢ = — /2 at the right end of the curve.

Differential Equation for the Curve

The curvature is the rate of turning as onc goes along the curve, that is,
K=

so - c% = v cos ¢,

and consequently, s=-—c f 7%;-.

The substitution cos ¢ = ¢ leads to a denominator of the form
VETDUTD,

while the substitution cos ¥ = &2 leads to a denominator of the form

\/ 1~ ¢4

In cach case we are dealing with the integral of a rational function of ¢ and the square root of a cubic or
quartic polynomial in §. This means that the answer can be expressed as an clliptic integral [pg. 16, 9; pg. 833,

10; pg. 904, 11; pg. 589, 12}.

i v ‘ ‘f
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We can actually just look up the result directly {using pg. 154, 11; also see Appendix] and find the solution
s= V2cFos 'Veosy, 17V,

where F is the incomplete elliptic integral of the first kind.] The constant of integration has been chosen so
that ¢ =0 corresponds to s=0. The result came out positive because the integration goes from ¢=0 to
negative values of . For the half of the optimal curve in the negative quadrant, a minus sign must be
attached. Some readers may notice the similarity of the sotution found above, to the equation for a pendulum
[pg. 28. 9). swinging from —#/2 to +#/2 (where ¢ is the angle from the vertical, while s corresponds to the
time).

We now have the equation of the curve sought after in Whewell form [pg. 4. 14], namely arc length as a
function of tangential angle. We can immediately also rewrite it in Cesaro form [pg. 4, 14], namely as a
relation between are length and curvature:

s= V2 ¢ Fcos (- cx), 1/VI).

Both of the forms given above are intrinsic equations for the curve [pg. 40, 2].

We can easily compute the length of the curve from an initial point at the top, where ¢ =0, to the point on the
x-axis, where ¢ = — #/2, since

F(@/2,1/V72) = K1/V73)

where K is the complete elliptic integral of the first kind. Now [pg. 909, 11),

. . 1 dr r(1/4)?
K(1/V3) = Kisin (n/4)) = fff ——— = —(7-L
. 0 / 1/ “vn)

where T is the gamma function [pg. 821, 10: pg. 933, 11; pg. 255, 12]. There is an infinite product [pg. 938, 11]
for [(1/4)*

oo
o e 2 TT (3k=120(4k+ 12 =1)
/4" =16= H (4k+1)?[(4k~1)°=1]

which gives us the numerical value

I'(1/4) = 3.6256099082...

2
The arc length is finally, S= g r l/‘:' .

1. Note that some authors [pg. 833, 10] list the arguments of the incomnplete clliptic functions in the reverse
order of that shown here.
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Cartesian Form of the Solution

For many purposes it is more convenient to express the solution as a relationship between the x and y
coordinates,

We note that -“% = cos ¢ and % = sin ¢,

and remember that -~ c% = vcos§.

By the chain-rule for differentiation % = Zs—x / %sk = —cvcos ¥,
and %:%/%z—csin#«/m.

The latter equation is easy to integrate using the substitution z = cos ¥.
=c[49 -
y=ef iz = 2c/ 2,
so that 0/2c) = Veos ¥,

where the constant of integration was chosen so that y=0 when ¢ = —#/2. The reader may also recall that in
the previous scction this result was found dircctly as the limit of height of the multi-arc approximation.

‘The integral for x is a little harder, X=c f Ycos¥ &y

This can be expressed as the difference of two incomplete clliptic integrals [using pg. 156, 11; also see
Appendix].1

x= V3c[2Eos Vos ¢, 1/V D) ~ Ficos Y eos ¥, /v )],
where the constant of integration was chosen so that x=0 when ¥ =0.2 Finally then,
x= V312 E(cos Y (p/20), 1V V3) — Fleos™ Y (3726). 1/VD)).
An alternate way to oblain the same result is to note that x and y are rclated by the differential cquation

dy _ 3! 1 - (¥/2)*
dx ~ /2c) '

o

1. Note that E denotes more than one thing in this paper. When the Jetter appears with one argument it
significs the complete elliptic integral of the sccond kind, while it denotes the incomplete clliptic integral of
the sccond kind when is has two argument, as here,

2. Note again that some authors [pg. 833, 10] list the arguments of the incomplete elliptic functions in the
reverse order of that shown here,




1 -cos?y

. 1_1)_ _ _
since = tany =
dx cos y

In any case, fory = €@

x = VIA2AVYD - KWV
where K and F are the complete elliptic integrals of the first and second kind respectively.
Using | cgendre’s idenuty {pg. 25, 9: pg. 836, 10; pg. 90711, pg. 591, 12]

IXOKIK') + KUK ) K(k) — K(K)K(K') = w/2,

where K+ k=1,
we get [pg. 25. 9} YRV = a2 + KAV KD,
so that 1200/ - K/ VDY =(0/2) | K1/
Su the width of the curve is W= (-‘rz-(‘l!j:—;;.

and. if we want W = 1, we must have

- 2
¢ = (121‘—;3‘;‘)7 = 0.8346268416...
L 4

The height of the curve then comes to

H = 2¢ = 1669253683...

(compare to the two-arc approximation). The mmimum radius of curvature, the inverse of the maximum
curvature, is

ol 0
Tmin = (H/Z?} ¢ = (.8346268416...

Thus a circle tangent to the curve at the top is also tangent to the x-axis.

4

‘The arc length comes to s=1 ﬂ-]—/i)" ,

2 (2w)
or S = 2.188439615... = 1.393203929%( /).
Finally, from “’—,f = e,
we get E= e,

k]

and 30 E= l—%’}l? =~ 1.435540022... = 09138931623%(w/2).

Note that E'S = «. The curve of least energy is shown in Figure 8,



-
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Fxtension of the Curve

So far we have considered a finite segment of the optimum curve, extending from a point of zero curvature
(where § = — w/2) through a point of maximum curvature (where ¥ =0) to a second point of zero curvature
(where = +%/2). Can the curve be extended beyond these points?

1t is clear that ¥ must remain in the range [— #/2. +#/2] so that the square root of its cosine remains real.
To continue the curve then, the sign of the curvature must change; we must choose the other sign for the
squarc-root.  The new segment we obtain has the same shape, of course, as the scgment we have found
alrcady, just inverted.

The scgment we have used so far is just a piece of the infinite periodic wave shown in Figure 9. In Figure 10
we see several curves which correspond 1o stationary values of the integral and pass through the specified
pomts with the desired onentation. The une on the left is the one which corresponds to a global mimimum of
the cnergy. 'The curves containing n half-cycles have an cnergy n? as large as the onc containing a single
haif-cycie.

The curve of least energy passing through two given points with specified oricntation is just a portion of the

general cunve, suitably translated. rotated, and scaled. This is illustrated in Figure 11. The rotated. translated
and scaled curves form a four parameter family.

Variational Approach
We are trying to find the curve for which E = f 2 ds
1s mimmal. This integral can also be written in the form
F= f‘z [+ U:)zluz dx,

or, since ‘:W'
"2
] I::flT%,))ji‘ndx.

This is of the form [Fury. yrd

and the cakulus of variation [pg. 119, 15; pg. 190, 16 pg. 198, 17] teaches us that for a stationary value of the
integral,

S U L
f, dxry+g;,ry = 0,

where F ) }y and Fyu arc the partial derivatives of / with respect to y, y', and y” respectively:
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o _SYO?
=T omT

2
b = Ty 0Pt

i = _dfr, _4dr. 1=
Since £, = 0, dx[Fy by ] =0.
and integrating, we get - Fy' + d—‘i Fyu = A,

where A is an arbitrary constant. In the above we have closely followed the approach taken by Mchlum
[pgs. 157&189. 2; pg. 43, 6].

d o2y 0y
o =T O e O
" sy'(y")?
SO we get _——LTm—lT:X(_%%iﬂ’::A-

1+ 0]
'”‘_di Q'_n' "
Now %~dx/dx'y 1y,

» _(j_l ‘“2— . ’"
In addition dy’Z() Y=y %’

d _ S
e e

Using these results in the equation above,

2% 4
l_iz)m =
AT
1y2
and, integrating, we get “——S'U-ym =AY + 8,

+ )]

where B is a second arbitrary constant.

Returning for a moment to the integral of the square of curvature, we sce that
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fx’ds:f[Ay’+B}dx=fAdy+dex
= Ay, - ) + Bx, - xp)

for a curve which starts at (xg ¥,) and ends at (Jc1 . yi).

2%
Now “—+(L(y,))-{]577=xzv 1+ ()2,
S0 xz-‘/ 1+ () =4y + B

Also, %:%/%:m.

$0 x? 1/ 14+ (/0% = A0G/% + B,

or *x? = Ay + Bx, '
since 2+ =1 .
Now if tany = %.

then x=cosy and y =siny.

Remembering that K= %.

we finally see that %‘f =+ VAsny + Beosy.

Letting A=Vctcosp and B= — V/c*sing ‘
we get c% =% Vsin(y - 9). 'h

The scale of the curve is dependent on the parameter ¢, while the rotation in the xy~plane is dcpendent on the
parameter ¢.

Altogether we have a four ;arameter family of curves, since we can also choose an initial point and a direction
for the curve. Conversely, we can find a single curve out of this family which passes through any two points
with orientation specified at both points.

By the way, if we let the line from the initial point (xy,y,) to the final point (x,,y,) have length r and dircction |
#, then

fxzds = (r/c)sin (0 - ?).
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Summary '
We have found the simple equation
ek = »’W@—_ﬂ ,

and solved it to find the equation of the curve of least energy in Whewell form

s=*vV2cF(cos ' Vios(§—9), 1/VI).

i We also developed a differential equation for the curve in Cartesian coordinates aligned with the axis of

symmetry,
dr_ ]Z 1 - /20"
dx 2c) '

o/

The solution of this equation, for given initial conditions, led to

x = Ve[ 2 E(os Y(072¢), 1/V2) - F(cos™Y(y72¢). 17V D)].

We considered the curve of least energy connecting the point (—1,0) to the point (+1,0) with vertical initial
and final oricntations. This curve has minimum radius of curvature ‘

rises to a height H = 2c,
4
has arc length S = '% l‘(zl:; \ ?

3 ,
and energy k= l_‘(zl_';‘%" ?j

or about 91.39% of that of the simple semicircle approximation. f

We have also given a method for finding approximations, consisting of circular arcs, to the curve of least
cnergy.

Note that the curve found here is extensible [7] in the sense that if the least energy curve with oricntation a at
A and orientation B at B passes through the point C with orientation y, then the segments from A4 to C and
from ( to B arc themselves least energy curves. (This is not true of the two-arc approximation [8])). As a
result, such a curve can be computed by a simple, locally connected network.

We have not shown how to find the particular member of the four parameter family of curves which passes
through a specified pair of points with specificd oricntation. Presumably determining the axis of symmetry
of the curve would be a helpful first step in this direction. In practical applications the multi-arc
approximation mcthod may be suitable in dealing with this problem. We have not discussed how onc might
compute the curve of least encrgy passing through three or more points. Here there is no constraint on the
dircction, but the curvature must be continuous. Nor have we touched upon the extension to curves and
surfaces in three dimensions, a topic which Mchlum addresscs [pg. 62, 6).




-21-

Acknowledgments

Mike Brady and Eric Grimson drew my attention to this problem and provided a number of valuable insights.
The assistance of Judi Jones in creating the figures and in dealing with the text justifier is also appreciated. ;




Appendix

-22-

In this appendix we determine two integrals needed in the body of the paper.

To evaluate the integral

wc substitute

and obtain

Next, substituting

we get

and since

we finally get

To evaluate the integral

we again substitute

and obtain

2

A

¢ =cosy
vcos ¢ dt
112——2 . " &
-§
,2___1_82'
1=nf\/1.—cosq7 dt
0

sin"'VT—cos¢ =cos vVecos ¥,

j;‘p 7% = v32 F(cos" ' Vcos ¢, I/V7D).

L= [ veva.
¢ =cosy,
reos T 2
I, = -2 cos ¢ dt.
2 1 1- £4

Now

§
V!

To evaluate

we substitute as before

._€4=_/1+€2_/T_€z'_Jl_iz—f_er

The integral thus can be split into two parts, the second of which we have alrcady evaluated.

! —J,:—Zf‘lcosq; 1+£z
1

dt
1-525

2

A=1-¢

«

EREET S




vi=cos¥ v/ 1-¢n
and obtain IL-1,= Zﬁf 0 dt,
0 1- 72
and so I, ~ I, = 2V2E(cos™ Vs ¥, 1/VD),
since sin"!VT=cos¢ =cos"'vcos ¢ .
Finally then, ]

j;"' veosydy = VI[2E(cos Vs ¥,1/V3) ~ F(cos"tveos ¥, 17V D))

The corresponding definite integrals from ¢ =0 to ¢ =a/2 can be expressed in terms of complete elliptic
integrals of the first and second kind [pg. 91, 9].
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Figure 11: Optimum curve passing through two given points with given oricntation. Itis a member of a four
parameter famuly of curves obtained by translatng, rotating, and scaling the particular curve
passing through the points (— 1. 0) and ( + 1, 0) with vertical orientation.







